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Abstract—Processing both streaming and batch data at the same 
time for big data analytics is very rare, even it is not possible to 
implement in real time applications such as air/ground monitoring 
and surveillance. A good solution requires for a combination of 
batch and speed layers which must be processed together in a 
strictly coordinated manner. This paper introduces, a new type of 
system for handling of the problem. It also presents design and 
implementation processes based on Lambda Architecture which 
is a new generation big data technology. In order to explain the 
novel system, a brief research on the Lambda Architecture is 
summarized. Building and configuring all the necessary Big Data 
frameworks for a Lambda Architecture requires three different 
layers work in a coordinated manner. This is very hard task to 
achieve for basic big data systems. A new type of hybrid system is 
proposed with a different concept having different layers on the 
same platform. The implementation results have shown that the 
proposed system provides successful solutions to achieve both 
processing batch and stream data, to visualize data queries and to 
reduce code maintenance for a real time air/ground surveillance 
and monitoring problem of air traffic over Ankara, Turkey. It is 
expected that the new system proposed and implemented in this 
article might be used not only this specific application but also in 
other real-time and eventually consistent applications. 

Index Terms—Big Data, Lambda Architecture, Data in Motion, 
Data at Rest, Air/Ground Surveillance 

 

I. INTRODUCTION 

For Big Data applications, simultaneous processing of data 

streams, both real-time and offline, is an essential requirement 

for a long time. The data processing requirements for batch data 

and real-time processing operations dictate different tech- 

nologies and, as a result, a particular type of Big Data architec- 

tures. One of the concepts that have been developed and widely 

used today is Lambda Architecture (LA) [1]. Architecture 

compromises of three distinct layers for processing both data in 

motion (DiM) and data at rest (DaR) at the same time and 

a serving layer for presenting the results. Every Lambda 

Architecture layer is related to a specific task for processing 

data with different characteristics, combining the processed 

results from these layers and serving these merged data sets 

for visualization, query, and data mining purposes. The speed 

layer is mainly responsible for processing the streaming/real- 

time data (DiM) and very vulnerable to delaying and recurring 

data situations. The batch layer is responsible for processing the 

offline data (DaR), calculating the pre-defined analytics 

operations, and correcting the errors that sometimes occur on 

data arrival at the speed layer. The serving layer is in charge 

of ingesting data from the batch and speed layer, indexing 

and combining resulting data sets for the required analytical 

queries. The serving layer requires the unique capability to 

ingest and process both streaming data (DiM) in real-time 

as received and bulk data (DaR) in huge quantities. It has 

to be emphasized that Lambda Architectures are eventually 

consistent systems for big data processing applications and 

can be used for dealing with CAP theorem [2]. The batch 

layer corrects data ingestion inconsistencies caused by the real-

time layer after finishing the data processing. Eventually, 

accurate data is served and made available at the serving layer 

to provide information to the remaining operations. 

It is evident that these complex data processing operations 

and serving the corrected data as accurately as possible require 

highly coordinated and continuous operation between speed 

and batch layers together. It is a tremendous advantage of LA 

that consisting of three separate layers, provide flexible usage 

of different Big Data technologies for each layer. However, this 

also brings some drawbacks. Even though LA is an auspicious 

direction, its success depends on an effective combination of 

the right and mature technologies. The fundamental problem 

is developing a Big Data application for each layer separately 

and integrating them to work together and in an interoperable 

manner. The usage of different technologies in LA layers 

requires separate development and maintenance efforts for each 

layer. For some reason, if the data model or the data format in 

the application changes or additional new analytics capability 

is required, it finally results in updating, testing, and deploying 

this big data application at all layers. 

This work aims to present an end-to-end big data system and 

architecture, Lambda Architecture, a more modern generation 

of big data technology, for real-world applications. In the first 

section, to design a successful LA, candidate technologies are 

briefly reviewed for each layer, layer-wise design constraints 

investigated, and the same software development framework’s 

usage in different layers (same code for different layers - 
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SC-FDL) approach introduced. In the second section, the 

suggested LA was applied to a real-world case study for 

Air/Ground Surveillance, and real-world performance tests 

under different real-world data ingestion conditions were per- 

formed. In the last section, the implementation and testing 

results were shared and have shown that the proposed system 

provides robust performance to achieve both processing batch 

and stream data, visualization of data queries, and reduce code 

maintenance for real-time air/ground surveillance. 

II. RELATED WORK 

The main advantage of building a Lambda Architecture based 

Big Data system is handling the requirement of de- veloping a 

fault-tolerant architecture for preventing data loss against 

hardware problems and unexpected mistakes during processing 

both DaR and DiM. It works well under the workloads, which 

require minimum latency read and update operations. This sort 

of system has to support ad-hoc queries, be linearly scalable 

and extensible. 

One of the early examples of lambda architecture was used 

for IoT based smart home application [3]. Another application 

proposed a multi-agent big data processing approach to im- 

plementing collaborative filtering to build a recommendation 

engine by using LA [2]. For prime examples of LA, Apache 

Spark/Spark Streaming, Hadoop YARN [4], and Cassandra [5] 

technologies were used for real-time, batch, and serving layers, 

respectively, for LA architectures. Task-based serving, batch, 

and speed layers were selected to build real-time and batch 

views, furthermore querying the aggregated data. Apache 

Hadoop and Storm frameworks are mature enough tech- 

nologies to implement and deploy for LA applications with 

different requirements [6]. An alternative strategy for utilizing 

the speed and batch layers of LA was implemented [7]. If time 

restrictions are not applicable and time periods are in degrees 

of minutes, continuously operating a speed layer is unnec- 

essary. Using stream processing only when batch processing 

time exceeds the system’s response time is a design to utilize 

the cluster resources efficiently [8]. Using performance models 

for software systems to prognosticate a big data system’s 

execution metrics and cluster resources and then operating 

the speed layer is an application-specific approach [9]. An- 

other work suggested a basic set of procedures to examine 

the difficulties of volatility, heterogeneity and desired low 

latency performance by decreasing the overall system timing 

(scheduling, execution, monitoring, and error recovery) and 

latent faults [10]. 

III. LAMBDA ARCHITECTURE BASED BIG   DATA   SYSTEM A 

Lambda Architecture compromises a speed, a batch, and 

a serving layer to process incoming data and respond to the 

queries over stored historical and newly received new data. 

When a query request is received at the serving layer, the 

response is generated by querying both real time and batch 

views at the same time and merging the results obtained from 

these layers. Both real-time and batch databases at the serving 

layer are queried, and results are merged into one resultant 

data set so that a near real-time data set can be formed in 

response to the query. A scalable distributed data transfer 

system (data bus) provides data transfer operation continuously 

to simultaneously batch and speed layers. The data processing 

and analytics operations are executed in a real-time manner 

on the speed layer and offline manner on the batch layer. A 

conceptual visualization of the Lambda Architecture is shown 

in Figure 1. Incoming data from the data ingestion bus is sent 

both speed and batch layer, and then using these new and 

old data, several views are generated by these layers, and the 

results are hosted on the serving layer of LA. Several existing 

big data technologies can be used in all three layers to build 

a LA. Each available big data technology framework can be 

used for its particular data processing capability to deal with 

that type of data and support analytics operations according 

to LA’s polyglot persistence paradigm. 

The batch layer manages, operates, and stores immutable 

primary data set blocks. The incoming very recent data are only 

appended to the previously stored historical data on the batch 

layer. In fact, on the batch layer, update and delete opera- tions 

are not allowed. As required, continuous data processing and 

analytics operations are executed to produce batch views by 

using this data. When coordinated with the speed layer or 

on a predefined amount of new data arrival, a new batch view 

computation operation is re-executed one after another and 

aggregated to form new batch views. This operation is 

continuous and everlasting. The batch views are always 

generated from all the immutable data set stored in the batch 

layer. Full batch data processing from beginning to end and 

analytical calculations take too much time depending on the 

size of both incoming and stored historical data. Batch layer 

data processing and importing progress must be monitored to 

ensure whether batch view generation is completed before the 

speed layer is overloaded. 

 

Fig. 1. Conceptual diagram of a lambda architecture 

 
The serving layer is used to respond to the incoming queries 

using real-time and batch views generated via both speed and 

batch layers. So, the serving layer requires big data storing 

capabilities like NoSQL databases with different 

characteristics. Because of the different types of data ingestion 

patterns, both bulk and real-time data ingestion or ingestion 

capabilities must be supported at this layer. The serving layer 

is vulnerable to delaying or missing streaming data situations. 

Inconsistent data analytics and query responses may occur 

under these circumstances and are eventually corrected solely 

by the batch layer. 
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To meet the low latency analytics and responsive query 

requirements, the LA’s speed layer is used to compensate for 

the batch views’ staleness and serves the most recently received 

data, which are yet not processed by the batch layer. The speed 

layer works on the streaming data in a real-time manner and 

stores its output in the serving layer as real- time views 

depending on its limited capacity. Because of the nature of the 

real-time operation requirements, the speed layer necessitates 

high read and write operations on the serving layer. Real-time 

views are only required to store recent data until the batch layer 

completes its operation cycle one or two time(s). When the 

batch layer finishes the data processing and analytics 

calculation operations, the data stored as real- time views 

during the batch processing are discarded and deleted from the 

serving layer. After batch view generation ends, some real-time 

views have to be flushed or cleaned from the real-time layer 

depending on the data processed at the batch layer. This 

operation is an essential and crucial step in reducing the stress 

on the real-time database at the serving layer. Monitoring the 

speed layer resources and taking action depends on the resource 

consumption and capacity requirement, precise coordination 

between the layers, and specific performance metrics for all 

layers. Under improper conditions or faulty coordination with 

the speed layer, the batch view will be stale for at least the 

processing time between the start and the end time for the 

batch operations or even more. This phenomenon requires 

critical and strict coordination between speed and batch layers. 

As soon as the coordinated data processing operation between 

speed and batch layers is completed, bulk data import is 

required on the serving layer. After the final batch views are 

ready, data ingestion on the serving layer is completed. 

A. Technology Selection for Lambda Architecture Layers 

The data ingestion part (data-bus) is formed to receive a high 

volume of real-time data for the Lambda Architecture. One of 

the most widely used and common frameworks for data bus 

technologies is Apache Kafka [11], and it is very mature, 

proper, scalable, fault-tolerant, and eligible for this purpose. It 

supports high throughput data transfer and is a scalable, fault-

tolerant framework for data bus operations. For the speed layer, 

Apache Samza [12], Apache Storm [13], and Apache Spark 

(Streaming) [14] are excellent choices. Apache Hadoop [4], 

Apache Spark is very common for the batch layer operations. 

Apache Cassandra [5], Red is [15] , Apache H Base [16], 

MongoDB [17] might be used as a speed layer data base. These 

databases support high-speed real-time data ingestion and 

random read and write as well. MongoDB [17], Couch base DB 

[18], and Splout SQL [6] can be used as a batch layer database. 

Apache F link [19] is also a good candidate for data processing 

operations, and is a framework and distributed processing 

engine for stateful computations for unbounded and bounded 

data streams. On the other hand, Apache Spark is an open-

source data processing framework built for speed, with ease of 

use and complex analytics. It gives an extensive, all-in-one 

framework to handle big data processing require- 

ments with diverse data sets and the source of data. Apache 

Spark supports a programming model, discretized streams (D- 

Streams) [20]. Generally, using NoSQL databases for LA is 

very common instead of relational databases. Scalable and 

advanced capabilities for data ingestion are the main reasons 

to be used at the serving layer. Druid [21] ] is an open-source, 

column-oriented, distributed, real-time analytical data store. 

The distribution and query model of Druid has similarities 

with the ideas from current generation search infrastructures. 

Druid real-time nodes provide the capability to ingest, query, 

and create real time views from incoming data streams. 

Generally, using NoSQL databases for LA is very common 

instead of relational databases. Scalable and advanced capabil- 

ities for data ingestion are the main reasons to be used at the 

serving layer. Druid [21] is an open-source, column-oriented, 

distributed, real-time analytical data store. The distribution and 

query model of Druid has similarities with the ideas from 

current generation search infrastructures. Druid real-time nodes 

provide the capability to ingest, query, and create real- time 

views from incoming data streams. Data streams that are 

indexed via real-time nodes are instantly available for querying. 

Druid also has built-in support for generating batch views by 

using Hadoop and running Map-Reduce jobs to partition data 

for batch data ingestion. 

B. Same Coding for Different Layers Approach 

Developing applications with Big Data frameworks may be 

complicated, and debugging an algorithm on a Big Data 

framework or platform maybe even more challenging. Tra- 

ditionally, application development and testing have to be done 

at least twice for Lambda Architecture for batch and speed 

layers. Besides the configuration and coordination re- 

quirements of each layer, the most critical disadvantage of 

Lambda Architecture is that sometimes it is not practical to 

write the same algorithm twice with different frameworks for 

the developers. Developing, debugging, testing, and deploying 

separate software with different frameworks on large hardware 

clusters for Big Data applications requires extra effort and 

extreme work. To overcome this handicap, using the same big 

data processing technology for different layers is a practical 

approach. 

By using Spark and Spark Streaming together provides usage 

of the same code for batch and online processing for Big 

Data applications. As for the Lambda Architecture, Spark 

Streaming and Spark can be used for developing the speed layer 

and the batch layer applications. Both layers can be supported 

by this framework effectively. Nevertheless, one problem 

remains that the serving layer has to be integrated with both 

layers for data processing and providing the data ingestion for 

both layers. 

IV. CASE STUDY: LAMBDA ARCHITECTURE 

PERFORMANCE TESTS FOR AIR TRAFFIC VISUALIZATION 

AND MONITORING 

For the Aviation domain, an Air/Ground Surveillance system 

characteristically necessitates high-speed distributed 
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streaming data processing. Automatic Dependent Surveillance- 

Broadcast (ADS–B) is a cooperative surveillance technology in 

which an aircraft determines its position via GPS signals using 

satellites, periodically broadcasts it in specific message format, 

and makes itself to be tracked$. Air traffic control ground 

stations can receive the information emitted from the aircraft or 

be received by other aircrafts to provide situational awareness. 

It is also a collision-avoidance system for aircraft. ADS-B 

enhances safety by making an aircraft visible to air traffic 

control (ATC) and other aircrafts with position and velocity 

data transmitted every second in specific message formats. 

There are several types of certified ADS-B data links, but the 

most common ones operate at 1090 MHz, essentially a 

modified Mode S transponder or 978 MHz. Signals contain 112 

bits of data, encoded using pulse position modulation with a 

data rate of 1Mbps. The ADS-B data can be recorded and stored 

for further flight analysis. The data is received from multiple 

sources and physical locations at the same time with high 

streaming rates. 

For this study, software-defined radios located in geographi- 

cally different areas to improve signal reception coverage were 

used for decoding the received ADS-B signals from air and 

ground vehicles at the edge. This data is then sent as decoded 

messages into a data ingestion framework to feed both the LA’s 

speed and batch layers. After the required analytics operations 

are applied for both speed and batch layers, the results are 

shown on the visualization dashboard developed using the LA’s 

serving layer. 

 
TABLE I 

SELECTED  BIG  DATA  TECHNOLOGIES  FOR  THE  APPLICATION 

 

   Layer / Component Name Big Data Technology  

Batch Layer Hadoop / Apache Spark 
Speed Layer Spark Streaming 
Serving Layer Druid 
Data Bus Apache Kafka 
Layer Coordination and Control Agent YARN Application 

   Monitoring Agent YARN  

Time and safety-critical applications require minimal down- 

time, scalability, low latency, low maintenance, development 

effort, and good fault tolerance. Although some of those 

requirements can be fulfilled by the Big Data technologies, low 

maintenance and development efforts are generally hard to 

solve. After careful inspection and evaluation, considering the 

application requirements, Big Data technologies have been 

selected and given in Table I. To implement the SC-FDL 

concept, the Apache Spark framework was selected for both he 

batch and the speed layers. Druid real-time analytics database 

is chosen for the serving layer. Apache Kafka was selected for 

a distributed streaming platform as a data bus. For the speed 

layer and batch layer coordination and control, a YARN 

application was developed. YARN was deployed for clutster 

management and resource management system. 

A. Proposed End-To-End Lambda Architecture Based System 

An application based on Lambda Architecture called CyFly 

was developed to visualize real-time aircraft positions at the 

same time it is used for post-aircraft analytics by querying the 

ingested historical data. It also provides collision avoidance 

detection with real-time analytics. The architectural overview 

of the system is shown inFigure 2. 
 

Fig. 2. Lambda architecture for air traffic monitoring application 
 

5 remote SDR are located different locations in Ankara and 

used as an ADS-B signal decoder. After decoding the receiving 

signals and converting the binary data to the text- based 

messages, software on the single board computer sends this 

information to the data bus. In this Lambda Architecture, 

Apache Kafka is deployed as the primary data bus and inte- 

grated with SDR via TCP sockets. The data bus is integrated 

with the speed layer by using Spark Streaming + Kafka Inte- 

gration receiver-less method. Incoming raw data from different 

SDRs over Apache Kafka are joined in D Streams, then ETL, 

and filtering operations are applied at the speed layer. At the 

same time, this raw data coming from Kafka is stored in the 

HDFS. At the batch layer, ETL and filtering operations are 

applied with Spark and then results are written in the HDFS 

again. After this operation, the batch data ingestion operation 

for Druid is started with Druid’s indexing services. As of the 

batch layer, both Hadoop indexer job and Druid’s indexing 

service are used for ingesting offline data. If the data is less 

than several Gigabytes, the Druid indexing service is used; 

otherwise, the Hadoop Indexer job is started by a coordination 

agent for efficient data ingestion to Druid as a serving layer. 

The coordination agent is mainly responsible for monitoring 

and triggering batch ingestion jobs according to offline data 

size after ETL operations. If a certain amount of offline data 

reaches a predetermined value and ETL operation is completed, 

an indexing operation is started concerning offline data size by 

this agent. New segments are generated continuously and are 

produced query focused views at the serving layer. After batch 

ingestion, some real-time views are overridden by the batch 

views with recent data. Generally, data delay and recurrent 

data receiving situations may happen. A Data retention policy 

can be used with Druid to discard delayed data for a certain 

amount of time, and the missing data can be corrected with 

batch layer ingestion. A Red is key-value store is also connected 

with the Spark Streaming framework at the speed layer. 

Publish-subscribe operation is implemented for updating the 

aircraft’s’ information. This database is used to buffer more 

recent data for 5 minutes to newly connected clients for aircraft 

visualization. A Node.js service is connected to Red is and 

stream all the information to 
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clients via using Web Socket technology. Historical data can be 

queried and visualized by using another web service. For fault 

tolerance and high availability, Hadoop HDFS is deployed on a 

cluster. It is also used as deep storage for the Druid. YARN and 

Zoo Keeper are deployed on a cluster for resource management 

and coordination services, respectively. 

B. Perforamance Tests for Different Data Ingestion Scenarios 

The system was tested under several data ingestion con- 

ditions with synthetic data by engaging a distributed data 

generator application. These working conditions were selected 

to simulate real-world conditions as good as possible, sum- 

marized as a data rate increase, data rate decrease, instant 

data rate increase, instant data rate decrease, recurrent data 

receiving, and delayed data receiving. To measure the system 

performance, latency, and the number of correct query results 

in a time window is calculated. Latency is defined as the time 

difference between the first ingestion time of data in the system 

and the visualization time of the same data on the dashboard. 

According to the performance requirements, this value must be 

less than 2 seconds. Predefined analytics queries were prepared 

and executed on control time windows (3 minutes), and the 

results of the queries were compared with the ground truth 

values. This test was applied sequentially. For the next time 

window, all the experiments were executed again. For every 

test case given above, experiments were executed 100 times 

to abtain more accurate and statistically significant results. 

V. RESULTS 

Proposed LA based system is deployed on a cluster. For 

the cluster hardware, 12 Dell PowerEdge R730 and 13 Dell 

PowerEdge R320 servers are used. With this cluster, over 6 

TB of RAM, more than 500 cores, and more than 0.6 PB disk 

space are available for data processing and storage. Under 

normal ingestion conditions, an average of 10000 messages 

per second was selected to model real air traffic data. Clus- ter’s 

computation capability is far beyond these ratings, but air 

traffic over Ankara does not generate too many ADS-B 

messages according to daily observations and statistics. For 

each data ingestion test, this nominal data rate was increased or 

decreased according to a particular pattern that can accurately 

model the real air traffic. Test and monitoring agent sent test 

data to the data bus and collected the necessary results and 

statistics for each test case. All the results are given in Table II 

for the first and second time window. 

For all test cases in the first-time window, the latency 

performance criteria are met. This value is never greater than 

589 ms for all test conditions. This result shows that the 

system can effectively process all the incoming data and meets 

the performance criteria without delay. For this test time 

window, the number of correct queries was equal to the ground 

truth. Under delayed data conditions, because of missing data 

problems, system query results were not accurately correct. 

Only 9879 of 10000 queries were correctly returned in this time 

window. These query errors must be corrected the next time 

window by the batch layer. Under the recurrent data 

receiving conditions, the system had an excellent capability to 

handle this case effectively. Results show that the LA system 

works accurately enough and as expected under all test cases 

in the first time window. 
 

Fig. 3. The speed and batch layer load under heavy data condition 

 
For all test cases, results obtained in the second time window 

are given in Table II as well. The latency performance criteria 

were met during the tests, and the latency value was never 

greater than 577 ms for all test conditions. This result shows 

that the system can effectively process all the incoming data and 

meet the performance criteria without any delay. For the second 

test time window, the number of correct queries was equal to 

the ground truth values. Under delayed data conditions, missing 

data were eventually corrected by the batch layer. Under the 

repetitive data receiving conditions, the system had an excellent 

capability to handle this problematic case effectively. The 

results are shown that the system works correctly and prone to 

incoming data problems eventually. 

Offline data can be queried by using the same application. 

Nevertheless, in the case of delaying and repetitive data receiv- 

ing cases, queries are eventually accurate. After batch layer 

operation is completed, query-focused views are overridden 

by resulting batch views, and this layer is vital to obtaining 

accuracy and precision for query results. Data processing rate 

under full data load conditions is shown in Figure 3. It is seen 

that the batch and speed layers work as expected in a 

complementary manner. 

VI. CONCLUSION 

This paper presents a Lambda Architecture-based big data 

system to propose an air/ground surveillance by applying the 

same code for different layers approach. The proposed system’s 

capabilities related to LA have been tested for real- world cases 

using ADS-B messages obtained from 5 remote locations with 

software-defined radio hardware. The design and 

implementation processes based on Lambda Architecture and 

performance tests for different data igestion load condi- tions 

are exhibited. 

The implementation and testing results have shown that the 

proposed system provides superior performance to achieve 
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TABLE II 
TEST  RESULTS  FOR  DIFFERENT  DATA  INGESTION  CONDITIONS 

 

Test Case Avg. Latency (ms) 
1st Time Window 

 

Query Results 
(Result/Ground Truth) 

 

Avg. Latency (ms) 
2nd Time Window 

 

Query Results 
(Result/Ground Truth) 

 

Normal Conditions 422.5 ± 71 10000 / 10000 428.5 ± 51 10000 / 10000 
Data Increase 501.8 ± 87 10000 / 10000 499.8 ± 77 10000 / 10000 
Data Decrease 423.6 ± 65 10000 / 10000 413.2 ± 55 10000 / 10000 
Instant Data Rate Increase 469.8 ± 62 10000 / 10000 452.8 ± 52 10000 / 10000 
Instant Data Rate Decrease 448.4 ± 44 10000 / 10000 438.4 ± 54 10000 / 10000 
Delayed Data 426.5 ± 52 9879 / 10000 436.5 ± 78 10000 / 10000 
Repetitive Data 428.7 ± 88 10000 / 10000 435.7 ± 48 10000 / 10000 

 

 

both processing batch and stream data, visualization of data 

queries, and reduce code maintenance for real-time air/ground 

surveillance. According to the experiment results, the Latency 

values were always below 500 ms, and the LA system was 

corrected missing and repeated data ingestion problems almost 

until in the second time window. It is also shown that de- 

veloping a Lambda Architecture requires integrating different 

technologies, even if it sometimes can be tough to implement. 

The experiments highlighted once more time that Lambda 

Architectures are eventually accurate systems to develop and 

implement the issues considered in this article. 
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