
© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 1 of 6

Lambda Architecture Based Big Data System for

Air and Ground Surveillance

Mustafa Umut DEM˙IREZEN

AI and Technology Management,

ROKETSAN Missiles Inc.,

Ankara,

TURKEY

Email: umut@demirezen.tech

(Corresponding author)

Tuğba Selcen NAVRUZ

Elecrical and Electronics Engineering,

Gazi University,

Ankara,

TURKEY

Email: selcen@gazi.edu.tr

Abstract—Processing both streaming and batch data at the same
time for big data analytics is very rare, even it is not possible to
implement in real time applications such as air/ground monitoring
and surveillance. A good solution requires for a combination of
batch and speed layers which must be processed together in a
strictly coordinated manner. This paper introduces, a new type of
system for handling of the problem. It also presents design and
implementation processes based on Lambda Architecture which
is a new generation big data technology. In order to explain the
novel system, a brief research on the Lambda Architecture is
summarized. Building and configuring all the necessary Big Data
frameworks for a Lambda Architecture requires three different
layers work in a coordinated manner. This is very hard task to
achieve for basic big data systems. A new type of hybrid system is
proposed with a different concept having different layers on the
same platform. The implementation results have shown that the
proposed system provides successful solutions to achieve both
processing batch and stream data, to visualize data queries and to
reduce code maintenance for a real time air/ground surveillance
and monitoring problem of air traffic over Ankara, Turkey. It is
expected that the new system proposed and implemented in this
article might be used not only this specific application but also in
other real-time and eventually consistent applications.

Index Terms—Big Data, Lambda Architecture, Data in Motion,
Data at Rest, Air/Ground Surveillance

I. INTRODUCTION

For Big Data applications, simultaneous processing of data

streams, both real-time and offline, is an essential requirement

for a long time. The data processing requirements for batch data

and real-time processing operations dictate different tech-

nologies and, as a result, a particular type of Big Data architec-

tures. One of the concepts that have been developed and widely

used today is Lambda Architecture (LA) [1]. Architecture

compromises of three distinct layers for processing both data in

motion (DiM) and data at rest (DaR) at the same time and

a serving layer for presenting the results. Every Lambda

Architecture layer is related to a specific task for processing

data with different characteristics, combining the processed

results from these layers and serving these merged data sets

for visualization, query, and data mining purposes. The speed

layer is mainly responsible for processing the streaming/real-

time data (DiM) and very vulnerable to delaying and recurring

data situations. The batch layer is responsible for processing the

offline data (DaR), calculating the pre-defined analytics

operations, and correcting the errors that sometimes occur on

data arrival at the speed layer. The serving layer is in charge

of ingesting data from the batch and speed layer, indexing

and combining resulting data sets for the required analytical

queries. The serving layer requires the unique capability to

ingest and process both streaming data (DiM) in real-time

as received and bulk data (DaR) in huge quantities. It has

to be emphasized that Lambda Architectures are eventually

consistent systems for big data processing applications and

can be used for dealing with CAP theorem [2]. The batch

layer corrects data ingestion inconsistencies caused by the real-

time layer after finishing the data processing. Eventually,

accurate data is served and made available at the serving layer

to provide information to the remaining operations.

It is evident that these complex data processing operations

and serving the corrected data as accurately as possible require

highly coordinated and continuous operation between speed

and batch layers together. It is a tremendous advantage of LA

that consisting of three separate layers, provide flexible usage

of different Big Data technologies for each layer. However, this

also brings some drawbacks. Even though LA is an auspicious

direction, its success depends on an effective combination of

the right and mature technologies. The fundamental problem

is developing a Big Data application for each layer separately

and integrating them to work together and in an interoperable

manner. The usage of different technologies in LA layers

requires separate development and maintenance efforts for each

layer. For some reason, if the data model or the data format in

the application changes or additional new analytics capability

is required, it finally results in updating, testing, and deploying

this big data application at all layers.

This work aims to present an end-to-end big data system and

architecture, Lambda Architecture, a more modern generation

of big data technology, for real-world applications. In the first

section, to design a successful LA, candidate technologies are

briefly reviewed for each layer, layer-wise design constraints

investigated, and the same software development framework’s

usage in different layers (same code for different layers -

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers
mailto:umut@demirezen.tech
mailto:selcen@gazi.edu.tr

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 2 of 6

SC-FDL) approach introduced. In the second section, the

suggested LA was applied to a real-world case study for

Air/Ground Surveillance, and real-world performance tests

under different real-world data ingestion conditions were per-

formed. In the last section, the implementation and testing

results were shared and have shown that the proposed system

provides robust performance to achieve both processing batch

and stream data, visualization of data queries, and reduce code

maintenance for real-time air/ground surveillance.

II. RELATED WORK

The main advantage of building a Lambda Architecture based

Big Data system is handling the requirement of de- veloping a

fault-tolerant architecture for preventing data loss against

hardware problems and unexpected mistakes during processing

both DaR and DiM. It works well under the workloads, which

require minimum latency read and update operations. This sort

of system has to support ad-hoc queries, be linearly scalable

and extensible.

One of the early examples of lambda architecture was used

for IoT based smart home application [3]. Another application

proposed a multi-agent big data processing approach to im-

plementing collaborative filtering to build a recommendation

engine by using LA [2]. For prime examples of LA, Apache

Spark/Spark Streaming, Hadoop YARN [4], and Cassandra [5]

technologies were used for real-time, batch, and serving layers,

respectively, for LA architectures. Task-based serving, batch,

and speed layers were selected to build real-time and batch

views, furthermore querying the aggregated data. Apache

Hadoop and Storm frameworks are mature enough tech-

nologies to implement and deploy for LA applications with

different requirements [6]. An alternative strategy for utilizing

the speed and batch layers of LA was implemented [7]. If time

restrictions are not applicable and time periods are in degrees

of minutes, continuously operating a speed layer is unnec-

essary. Using stream processing only when batch processing

time exceeds the system’s response time is a design to utilize

the cluster resources efficiently [8]. Using performance models

for software systems to prognosticate a big data system’s

execution metrics and cluster resources and then operating

the speed layer is an application-specific approach [9]. An-

other work suggested a basic set of procedures to examine

the difficulties of volatility, heterogeneity and desired low

latency performance by decreasing the overall system timing

(scheduling, execution, monitoring, and error recovery) and

latent faults [10].

III. LAMBDA ARCHITECTURE BASED BIG DATA SYSTEM A

Lambda Architecture compromises a speed, a batch, and

a serving layer to process incoming data and respond to the

queries over stored historical and newly received new data.

When a query request is received at the serving layer, the

response is generated by querying both real time and batch

views at the same time and merging the results obtained from

these layers. Both real-time and batch databases at the serving

layer are queried, and results are merged into one resultant

data set so that a near real-time data set can be formed in

response to the query. A scalable distributed data transfer

system (data bus) provides data transfer operation continuously

to simultaneously batch and speed layers. The data processing

and analytics operations are executed in a real-time manner

on the speed layer and offline manner on the batch layer. A

conceptual visualization of the Lambda Architecture is shown

in Figure 1. Incoming data from the data ingestion bus is sent

both speed and batch layer, and then using these new and

old data, several views are generated by these layers, and the

results are hosted on the serving layer of LA. Several existing

big data technologies can be used in all three layers to build

a LA. Each available big data technology framework can be

used for its particular data processing capability to deal with

that type of data and support analytics operations according

to LA’s polyglot persistence paradigm.

The batch layer manages, operates, and stores immutable

primary data set blocks. The incoming very recent data are only

appended to the previously stored historical data on the batch

layer. In fact, on the batch layer, update and delete opera- tions

are not allowed. As required, continuous data processing and

analytics operations are executed to produce batch views by

using this data. When coordinated with the speed layer or

on a predefined amount of new data arrival, a new batch view

computation operation is re-executed one after another and

aggregated to form new batch views. This operation is

continuous and everlasting. The batch views are always

generated from all the immutable data set stored in the batch

layer. Full batch data processing from beginning to end and

analytical calculations take too much time depending on the

size of both incoming and stored historical data. Batch layer

data processing and importing progress must be monitored to

ensure whether batch view generation is completed before the

speed layer is overloaded.

Fig. 1. Conceptual diagram of a lambda architecture

The serving layer is used to respond to the incoming queries

using real-time and batch views generated via both speed and

batch layers. So, the serving layer requires big data storing

capabilities like NoSQL databases with different

characteristics. Because of the different types of data ingestion

patterns, both bulk and real-time data ingestion or ingestion

capabilities must be supported at this layer. The serving layer

is vulnerable to delaying or missing streaming data situations.

Inconsistent data analytics and query responses may occur

under these circumstances and are eventually corrected solely

by the batch layer.

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 3 of 6

To meet the low latency analytics and responsive query

requirements, the LA’s speed layer is used to compensate for

the batch views’ staleness and serves the most recently received

data, which are yet not processed by the batch layer. The speed

layer works on the streaming data in a real-time manner and

stores its output in the serving layer as real- time views

depending on its limited capacity. Because of the nature of the

real-time operation requirements, the speed layer necessitates

high read and write operations on the serving layer. Real-time

views are only required to store recent data until the batch layer

completes its operation cycle one or two time(s). When the

batch layer finishes the data processing and analytics

calculation operations, the data stored as real- time views

during the batch processing are discarded and deleted from the

serving layer. After batch view generation ends, some real-time

views have to be flushed or cleaned from the real-time layer

depending on the data processed at the batch layer. This

operation is an essential and crucial step in reducing the stress

on the real-time database at the serving layer. Monitoring the

speed layer resources and taking action depends on the resource

consumption and capacity requirement, precise coordination

between the layers, and specific performance metrics for all

layers. Under improper conditions or faulty coordination with

the speed layer, the batch view will be stale for at least the

processing time between the start and the end time for the

batch operations or even more. This phenomenon requires

critical and strict coordination between speed and batch layers.

As soon as the coordinated data processing operation between

speed and batch layers is completed, bulk data import is

required on the serving layer. After the final batch views are

ready, data ingestion on the serving layer is completed.

A. Technology Selection for Lambda Architecture Layers

The data ingestion part (data-bus) is formed to receive a high

volume of real-time data for the Lambda Architecture. One of

the most widely used and common frameworks for data bus

technologies is Apache Kafka [11], and it is very mature,

proper, scalable, fault-tolerant, and eligible for this purpose. It

supports high throughput data transfer and is a scalable, fault-

tolerant framework for data bus operations. For the speed layer,

Apache Samza [12], Apache Storm [13], and Apache Spark

(Streaming) [14] are excellent choices. Apache Hadoop [4],

Apache Spark is very common for the batch layer operations.

Apache Cassandra [5], Red is [15] , Apache H Base [16],

MongoDB [17] might be used as a speed layer data base. These

databases support high-speed real-time data ingestion and

random read and write as well. MongoDB [17], Couch base DB

[18], and Splout SQL [6] can be used as a batch layer database.

Apache F link [19] is also a good candidate for data processing

operations, and is a framework and distributed processing

engine for stateful computations for unbounded and bounded

data streams. On the other hand, Apache Spark is an open-

source data processing framework built for speed, with ease of

use and complex analytics. It gives an extensive, all-in-one

framework to handle big data processing require-

ments with diverse data sets and the source of data. Apache

Spark supports a programming model, discretized streams (D-

Streams) [20]. Generally, using NoSQL databases for LA is

very common instead of relational databases. Scalable and

advanced capabilities for data ingestion are the main reasons

to be used at the serving layer. Druid [21]] is an open-source,

column-oriented, distributed, real-time analytical data store.

The distribution and query model of Druid has similarities

with the ideas from current generation search infrastructures.

Druid real-time nodes provide the capability to ingest, query,

and create real time views from incoming data streams.

Generally, using NoSQL databases for LA is very common

instead of relational databases. Scalable and advanced capabil-

ities for data ingestion are the main reasons to be used at the

serving layer. Druid [21] is an open-source, column-oriented,

distributed, real-time analytical data store. The distribution and

query model of Druid has similarities with the ideas from

current generation search infrastructures. Druid real-time nodes

provide the capability to ingest, query, and create real- time

views from incoming data streams. Data streams that are

indexed via real-time nodes are instantly available for querying.

Druid also has built-in support for generating batch views by

using Hadoop and running Map-Reduce jobs to partition data

for batch data ingestion.

B. Same Coding for Different Layers Approach

Developing applications with Big Data frameworks may be

complicated, and debugging an algorithm on a Big Data

framework or platform maybe even more challenging. Tra-

ditionally, application development and testing have to be done

at least twice for Lambda Architecture for batch and speed

layers. Besides the configuration and coordination re-

quirements of each layer, the most critical disadvantage of

Lambda Architecture is that sometimes it is not practical to

write the same algorithm twice with different frameworks for

the developers. Developing, debugging, testing, and deploying

separate software with different frameworks on large hardware

clusters for Big Data applications requires extra effort and

extreme work. To overcome this handicap, using the same big

data processing technology for different layers is a practical

approach.

By using Spark and Spark Streaming together provides usage

of the same code for batch and online processing for Big

Data applications. As for the Lambda Architecture, Spark

Streaming and Spark can be used for developing the speed layer

and the batch layer applications. Both layers can be supported

by this framework effectively. Nevertheless, one problem

remains that the serving layer has to be integrated with both

layers for data processing and providing the data ingestion for

both layers.

IV. CASE STUDY: LAMBDA ARCHITECTURE

PERFORMANCE TESTS FOR AIR TRAFFIC VISUALIZATION

AND MONITORING

For the Aviation domain, an Air/Ground Surveillance system

characteristically necessitates high-speed distributed

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 4 of 6

streaming data processing. Automatic Dependent Surveillance-

Broadcast (ADS–B) is a cooperative surveillance technology in

which an aircraft determines its position via GPS signals using

satellites, periodically broadcasts it in specific message format,

and makes itself to be tracked$. Air traffic control ground

stations can receive the information emitted from the aircraft or

be received by other aircrafts to provide situational awareness.

It is also a collision-avoidance system for aircraft. ADS-B

enhances safety by making an aircraft visible to air traffic

control (ATC) and other aircrafts with position and velocity

data transmitted every second in specific message formats.

There are several types of certified ADS-B data links, but the

most common ones operate at 1090 MHz, essentially a

modified Mode S transponder or 978 MHz. Signals contain 112

bits of data, encoded using pulse position modulation with a

data rate of 1Mbps. The ADS-B data can be recorded and stored

for further flight analysis. The data is received from multiple

sources and physical locations at the same time with high

streaming rates.

For this study, software-defined radios located in geographi-

cally different areas to improve signal reception coverage were

used for decoding the received ADS-B signals from air and

ground vehicles at the edge. This data is then sent as decoded

messages into a data ingestion framework to feed both the LA’s

speed and batch layers. After the required analytics operations

are applied for both speed and batch layers, the results are

shown on the visualization dashboard developed using the LA’s

serving layer.

TABLE I

SELECTED BIG DATA TECHNOLOGIES FOR THE APPLICATION

 Layer / Component Name Big Data Technology

Batch Layer Hadoop / Apache Spark
Speed Layer Spark Streaming
Serving Layer Druid
Data Bus Apache Kafka
Layer Coordination and Control Agent YARN Application

 Monitoring Agent YARN

Time and safety-critical applications require minimal down-

time, scalability, low latency, low maintenance, development

effort, and good fault tolerance. Although some of those

requirements can be fulfilled by the Big Data technologies, low

maintenance and development efforts are generally hard to

solve. After careful inspection and evaluation, considering the

application requirements, Big Data technologies have been

selected and given in Table I. To implement the SC-FDL

concept, the Apache Spark framework was selected for both he

batch and the speed layers. Druid real-time analytics database

is chosen for the serving layer. Apache Kafka was selected for

a distributed streaming platform as a data bus. For the speed

layer and batch layer coordination and control, a YARN

application was developed. YARN was deployed for clutster

management and resource management system.

A. Proposed End-To-End Lambda Architecture Based System

An application based on Lambda Architecture called CyFly

was developed to visualize real-time aircraft positions at the

same time it is used for post-aircraft analytics by querying the

ingested historical data. It also provides collision avoidance

detection with real-time analytics. The architectural overview

of the system is shown inFigure 2.

Fig. 2. Lambda architecture for air traffic monitoring application

5 remote SDR are located different locations in Ankara and

used as an ADS-B signal decoder. After decoding the receiving

signals and converting the binary data to the text- based

messages, software on the single board computer sends this

information to the data bus. In this Lambda Architecture,

Apache Kafka is deployed as the primary data bus and inte-

grated with SDR via TCP sockets. The data bus is integrated

with the speed layer by using Spark Streaming + Kafka Inte-

gration receiver-less method. Incoming raw data from different

SDRs over Apache Kafka are joined in D Streams, then ETL,

and filtering operations are applied at the speed layer. At the

same time, this raw data coming from Kafka is stored in the

HDFS. At the batch layer, ETL and filtering operations are

applied with Spark and then results are written in the HDFS

again. After this operation, the batch data ingestion operation

for Druid is started with Druid’s indexing services. As of the

batch layer, both Hadoop indexer job and Druid’s indexing

service are used for ingesting offline data. If the data is less

than several Gigabytes, the Druid indexing service is used;

otherwise, the Hadoop Indexer job is started by a coordination

agent for efficient data ingestion to Druid as a serving layer.

The coordination agent is mainly responsible for monitoring

and triggering batch ingestion jobs according to offline data

size after ETL operations. If a certain amount of offline data

reaches a predetermined value and ETL operation is completed,

an indexing operation is started concerning offline data size by

this agent. New segments are generated continuously and are

produced query focused views at the serving layer. After batch

ingestion, some real-time views are overridden by the batch

views with recent data. Generally, data delay and recurrent

data receiving situations may happen. A Data retention policy

can be used with Druid to discard delayed data for a certain

amount of time, and the missing data can be corrected with

batch layer ingestion. A Red is key-value store is also connected

with the Spark Streaming framework at the speed layer.

Publish-subscribe operation is implemented for updating the

aircraft’s’ information. This database is used to buffer more

recent data for 5 minutes to newly connected clients for aircraft

visualization. A Node.js service is connected to Red is and

stream all the information to

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 5 of 6

clients via using Web Socket technology. Historical data can be

queried and visualized by using another web service. For fault

tolerance and high availability, Hadoop HDFS is deployed on a

cluster. It is also used as deep storage for the Druid. YARN and

Zoo Keeper are deployed on a cluster for resource management

and coordination services, respectively.

B. Perforamance Tests for Different Data Ingestion Scenarios

The system was tested under several data ingestion con-

ditions with synthetic data by engaging a distributed data

generator application. These working conditions were selected

to simulate real-world conditions as good as possible, sum-

marized as a data rate increase, data rate decrease, instant

data rate increase, instant data rate decrease, recurrent data

receiving, and delayed data receiving. To measure the system

performance, latency, and the number of correct query results

in a time window is calculated. Latency is defined as the time

difference between the first ingestion time of data in the system

and the visualization time of the same data on the dashboard.

According to the performance requirements, this value must be

less than 2 seconds. Predefined analytics queries were prepared

and executed on control time windows (3 minutes), and the

results of the queries were compared with the ground truth

values. This test was applied sequentially. For the next time

window, all the experiments were executed again. For every

test case given above, experiments were executed 100 times

to abtain more accurate and statistically significant results.

V. RESULTS

Proposed LA based system is deployed on a cluster. For

the cluster hardware, 12 Dell PowerEdge R730 and 13 Dell

PowerEdge R320 servers are used. With this cluster, over 6

TB of RAM, more than 500 cores, and more than 0.6 PB disk

space are available for data processing and storage. Under

normal ingestion conditions, an average of 10000 messages

per second was selected to model real air traffic data. Clus- ter’s

computation capability is far beyond these ratings, but air

traffic over Ankara does not generate too many ADS-B

messages according to daily observations and statistics. For

each data ingestion test, this nominal data rate was increased or

decreased according to a particular pattern that can accurately

model the real air traffic. Test and monitoring agent sent test

data to the data bus and collected the necessary results and

statistics for each test case. All the results are given in Table II

for the first and second time window.

For all test cases in the first-time window, the latency

performance criteria are met. This value is never greater than

589 ms for all test conditions. This result shows that the

system can effectively process all the incoming data and meets

the performance criteria without delay. For this test time

window, the number of correct queries was equal to the ground

truth. Under delayed data conditions, because of missing data

problems, system query results were not accurately correct.

Only 9879 of 10000 queries were correctly returned in this time

window. These query errors must be corrected the next time

window by the batch layer. Under the recurrent data

receiving conditions, the system had an excellent capability to

handle this case effectively. Results show that the LA system

works accurately enough and as expected under all test cases

in the first time window.

Fig. 3. The speed and batch layer load under heavy data condition

For all test cases, results obtained in the second time window

are given in Table II as well. The latency performance criteria

were met during the tests, and the latency value was never

greater than 577 ms for all test conditions. This result shows

that the system can effectively process all the incoming data and

meet the performance criteria without any delay. For the second

test time window, the number of correct queries was equal to

the ground truth values. Under delayed data conditions, missing

data were eventually corrected by the batch layer. Under the

repetitive data receiving conditions, the system had an excellent

capability to handle this problematic case effectively. The

results are shown that the system works correctly and prone to

incoming data problems eventually.

Offline data can be queried by using the same application.

Nevertheless, in the case of delaying and repetitive data receiv-

ing cases, queries are eventually accurate. After batch layer

operation is completed, query-focused views are overridden

by resulting batch views, and this layer is vital to obtaining

accuracy and precision for query results. Data processing rate

under full data load conditions is shown in Figure 3. It is seen

that the batch and speed layers work as expected in a

complementary manner.

VI. CONCLUSION

This paper presents a Lambda Architecture-based big data

system to propose an air/ground surveillance by applying the

same code for different layers approach. The proposed system’s

capabilities related to LA have been tested for real- world cases

using ADS-B messages obtained from 5 remote locations with

software-defined radio hardware. The design and

implementation processes based on Lambda Architecture and

performance tests for different data igestion load condi- tions

are exhibited.

The implementation and testing results have shown that the

proposed system provides superior performance to achieve

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers

© https://fti-tn.net/publications Future Technologies and Innovations (FTI) Proceedings: 4th international conference on computer

applications and information security (iccais’2021) / March 19 / 2021/ Tunisia: https://fti-tn.net/iccais-2021-list-of-papers

Page 6 of 6

TABLE II
TEST RESULTS FOR DIFFERENT DATA INGESTION CONDITIONS

Test Case Avg. Latency (ms)
1st Time Window

Query Results
(Result/Ground Truth)

Avg. Latency (ms)
2nd Time Window

Query Results
(Result/Ground Truth)

Normal Conditions 422.5 ± 71 10000 / 10000 428.5 ± 51 10000 / 10000
Data Increase 501.8 ± 87 10000 / 10000 499.8 ± 77 10000 / 10000
Data Decrease 423.6 ± 65 10000 / 10000 413.2 ± 55 10000 / 10000
Instant Data Rate Increase 469.8 ± 62 10000 / 10000 452.8 ± 52 10000 / 10000
Instant Data Rate Decrease 448.4 ± 44 10000 / 10000 438.4 ± 54 10000 / 10000
Delayed Data 426.5 ± 52 9879 / 10000 436.5 ± 78 10000 / 10000
Repetitive Data 428.7 ± 88 10000 / 10000 435.7 ± 48 10000 / 10000

both processing batch and stream data, visualization of data

queries, and reduce code maintenance for real-time air/ground

surveillance. According to the experiment results, the Latency

values were always below 500 ms, and the LA system was

corrected missing and repeated data ingestion problems almost

until in the second time window. It is also shown that de-

veloping a Lambda Architecture requires integrating different

technologies, even if it sometimes can be tough to implement.

The experiments highlighted once more time that Lambda

Architectures are eventually accurate systems to develop and

implement the issues considered in this article.

ACKNOWLEDGEMENTS

This work presents the re-implementation of the results of

the limited part of the thesis given in [22].

REFERENCES

[1] N. Martz and J. Warren, Big Data Principles and Best Practices Of
Scalable Realtime Data Systems. New York, CA: Manning, 2015.

[2] B. Twardowski and D. Ryzko, “Multi-agent architecture for realtime
big data processing,” ACM International Joint Conferences of Web
Intelligence and Intelligent Agent Technologies (IAT), pp. 333–337, 2014.

[3] A. Villari, M. Celesti, Fazio, and A. Puliafito, “AllJoyn Lambda: An
architecture for the management of smart environments in IoT,”
International Conference on Smart Computing Workshops, pp. 9–14,
2014.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet Another Resource Negotiator,” in Proceedings of the 4th
Annual Symposium on Cloud Computing. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
10.1145/2523616.2523633

[5] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured
Storage System,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
April 2010. [Online]. Available: 10.1145/1773912.1773922

[6] Z. Hasani and G. Velinoc, “Lambda Architecture for Realtime Analytic,”
in ICT Innovations Conference, Macedonia, 2014, pp. 133–143.

[7] J. Kross, A. Brunnert, C. Prehofer, T. A. Runkler, and H. Krcmar,
“Stream Processing on Demand for Lambda Architectures,” in Computer
Performance Engineering, M. Beltrán, W. Knottenbelt, and J. Bradley,
Eds. Cham: Springer International Publishing, 2015, pp. 243–257.

[8] S. Nadal, V. Herrero, O. Romero, A. Abelló, X. Franch,
S. Vansummeren, and D. Valerio, “A software reference architecture
for semantic-aware Big Data systems,” Information and Software
Technology, vol. 90, pp. 75–92, 2017. [Online]. Available:
https://doi.org/10.1016/j.infsof.2017.06.001

[9] M. P. D. Pont, R. S. Ferreira, W. W. Teixeira, D. M. Lima, and
J. E. Normey-Rico, “MPC with Machine Learning Applied to
Resource Allocation Problem using Lambda Architecture,” IFAC-
PapersOnLine, vol. 52, no. 1, pp. 550–555, 2019. [Online]. Available:
https://doi.org/10.1016/j.ifacol.2019.06.120

[10] V. A. da Silva, A. J. C. dos, de Freitas Edison Pignaton,
L. T. J., and G. C. F., “Strategies for Big Data Analytics through
Lambda Architectures in Volatile Environments,” IFAC- PapersOnLine,
vol. 49, no. 30, pp. 114–119, 2016. [Online]. Available:
https://doi.org/10.1016/j.ifacol.2016.11.138

[11] J. A. Shaheen, “Apache Kafka: Real Time Implementation with Kafka
Architecture Review,” International Journal of Advanced Science and
Technology, vol. 109, pp. 35–42, 2017. [Online]. Available:
0.14257/ijast.2017.109.04

[12] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful Scalable Stream
Processing at LinkedIn,” Proc. VLDB Endow., vol. 10, no. 12, pp. 1634–
1645, August 2017. [Online]. Available: 10.14778/3137765.3137770

[13] M. H. Iqbal, , and T. R. Soomro, “Big Data Analysis: Apache Storm
Perspective,” International Journal of Computer Trends and Technology,
vol. 19, no. 1, pp. 9–14, 2015. [Online]. Available: 10.14445/22312803/
ijctt-v19p103;https://dx.doi.org/10.14445/22312803/ijctt-v19p103

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing. USA:
USENIX Association, 2010, p. 10.

[15] G. Kaur and J. Kaur, “In-Memory Data processing using Redis
Database,” International Journal of Computer Applications, vol. 180,
pp. 26–31, 2018.

[16] M. N. Vora, “Hadoop-HBase for large-scale data,” in Proceedings of
2011 International Conference on Computer Science and Network
Technology, vol. 1, 2011, pp. 601–605. [Online]. Available: 10.1109/
ICCSNT.2011.6182030

[17] A. Celesti, M. Fazio, and M. Villari, “A Study on Join Operations in
MongoDB Preserving Collections Data Models for Future Internet
Applications,” Future Internet, vol. 11, no. 4, pp. 83–83, 2019. [Online].
Available: 10.3390/fi11040083;https://dx.doi.org/10.3390/fi11040083

[18] M. A. Hubail, A. Alsuliman, M. Blow, M. Carey, D. Lychagin, I. Maxon,
and T. Westmann, “Couchbase Analytics: NoETL for Scalable NoSQL
Data Analysis,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2275–2286,
August 2019. [Online]. Available: 10.14778/3352063.3352143

[19] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache FlinkTM: Stream and Batch Processing in a Single
Engine,” IEEE Data Eng. Bull, vol. 38, pp. 28–38, 2015.

[20] T. Zaharia, H. Das, T. Li, S. Hunter, I. Shenker, and Stoica, “Discretized
streams: fault-tolerant streaming computation at scale,” Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pp. 423–438, 2013.

[21] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“Druid: a real-time analytical data store,” Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, pp. 157–
168, 2014.

[22] M. U. Demirezen, “Büyük veri uygulamaları için bir lamda mimari
gelis¸tirilmesi / Developing a lambda architecture for big data processing
applications,” Ankara, Aralık 2015. [Online]. Available: https:
//tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=WY5CM7tPNE2z_
YM6pBu0t9xbu0Fi98SPu47VrKdWON0NL3fd08lbqE1Y8Dd8Fxe5

https://fti-tn.net/publications
https://fti-tn.net/iccais-2021-list-of-papers

